Anthropogenic aerosols play a major role in the Earth–atmosphere system by influencing the Earth's radiative budget and precipitation and consequently the climate. The perturbation induced by changes in anthropogenic aerosols on the Earth's energy balance is quantified in terms of the effective radiative forcing (ERF). In this work, the present-day shortwave (SW), longwave (LW), and total (i.e., SW plus LW) ERF of anthropogenic aerosols is quantified using two different sets of experiments with prescribed sea surface temperatures (SSTs) from Earth system models (ESMs) participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6): (a) time-slice pre-industrial perturbation simulations with fixed SSTs (piClim) and (b) transient historical simulations with time-evolving SSTs (histSST) over the historical period (1850–2014). ERF is decomposed into three components for both piClim and histSST experiments: (a) ERFARI, representing aerosol–radiation interactions; (b) ERFACI, accounting for aerosol–cloud interactions (including the semi-direct effect); and (c) ERFALB, which is due to temperature, humidity, and surface albedo changes caused by anthropogenic aerosols. We present spatial patterns at the top-of-atmosphere (TOA) and global weighted field means along with inter-model variability (1 standard deviation) for all SW, LW, and total ERF components (ERFARI, ERFACI, and ERFALB) and for every experiment used in this study. Moreover, the inter-model agreement and the robustness of our results are assessed using a comprehensive method as utilized in the IPCC Sixth Assessment Report. Based on piClim experiments, the total present-day (2014) ERF from anthropogenic aerosol and precursor emissions is estimated to be −1.11 ± 0.26 W m−2, mostly due to the large contribution of ERFACI to the global mean and to the inter-model variability. Based on the histSST experiments for the present-day period (1995–2014), similar results are derived, with a global mean total aerosol ERF of −1.28 ± 0.37 W m−2 and dominating contributions from ERFACI. The spatial patterns for total ERF and its components are similar in both the piClim and histSST experiments. Furthermore, implementing a novel approach to determine geographically the driving factor of ERF, we show that ERFACI dominates over the largest part of the Earth and that ERFALB dominates mainly over the poles, while ERFARI dominates over certain reflective surfaces. Analysis of the inter-model variability in total aerosol ERF shows that SW ERFACI is the main source of uncertainty predominantly over land regions with significant changes in aerosol optical depth (AOD), with eastern Asia contributing mostly to the inter-model spread of both ERFARI and ERFACI. The global spatial patterns of total ERF and its components from individual aerosol species, such as sulfates, organic carbon (OC), and black carbon (BC), are also calculated based on piClim experiments. The total ERF caused by sulfates (piClim-SO2) is estimated at −1.11 ± 0.31 W m−2, and the OC ERF (piClim-OC) is −0.35 ± 0.21 W m−2, while the ERF due to BC (piClim-BC) is 0.19 ± 0.18 W m−2. For sulfates and OC perturbation experiments, ERFACI dominates over the globe, whereas for BC perturbation experiments ERFARI dominates over land in the Northern Hemisphere and especially in the Arctic. Generally, sulfates dominate ERF spatial patterns, exerting a strongly negative ERF especially over industrialized regions of the Northern Hemisphere (NH), such as North America, Europe, and eastern and southern Asia. Our analysis of the temporal evolution of ERF over the historical period (1850–2014) reveals that ERFACI clearly dominates over ERFARI and ERFALB for driving the total ERF temporal evolution. Moreover, since the mid-1980s, total ERF has become less negative over eastern North America and western and central Europe, while over eastern and southern Asia there is a steady increase in ERF magnitude towards more negative values until 2014.
A Kalisoras, AK Georgoulias, D Akritidis, RJ Allen, V Naik, C Kuo, S Szopa, P Nabat, D OliviƩ, T van Noije, P Le Sager, D Neubauer, N Oshima, J Mulcahy, LW Horowitz, P Zanis. Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
Journal: Atmos. Chem. Phys., Volume: 24, Year: 2024, First page: 7837, Last page: 7872, doi: 10.5194/acp-24-7837-2024