The EarthCARE mission aims to probe the Earth's atmosphere by measuring cloud and aerosol profiles using its active instruments, the Cloud Profiling Radar (CPR) and ATmospheric LIDar (ATLID). The correct identification of hydrometeors and aerosols from atmospheric profiles is an important step in retrieving the properties of clouds, aerosols and precipitation. Ambiguities in the nature of atmospheric targets can be removed using the synergy of collocated radar and lidar measurements, which is based on the complementary spectral response of radar and lidar relative to atmospheric targets present in the profiles. The instruments are sensitive to different parts of the particle size distribution and provide independent but overlapping information in optical and microwave wavelengths. ATLID is sensitive to aerosols and small cloud particles, and CPR is sensitive to large ice particles, snowflakes and raindrops. It is therefore possible to better classify atmospheric targets when collocated radar and lidar measurements exist compared to using a single instrument. The cloud phase, precipitation and aerosol type within the column sampled by the two instruments can then be identified. ATLID-CPR target classification (AC-TC) is the product created for this purpose by combining the ATLID target classification (A-TC) and CPR target classification (C-TC). AC-TC is crucial for the subsequent synergistic retrieval of cloud, aerosol and precipitation properties. AC-TC builds upon previous target classifications using CloudSat and CALIPSO synergy while providing richer target classification using the enhanced capabilities of EarthCARE's instruments, specifically CPR's Doppler velocity measurements to distinguish snow and rimed snow from ice clouds and ATLID's lidar ratio measurements to objectively discriminate between different aerosol species and optically thin ice clouds. In this paper, we first describe how the single-instrument A-TC and C-TC products are derived from ATLID and CPR measurements. Then the AC-TC product, which combines the A-TC and C-TC classifications using a synergistic decision matrix, is presented. Simulated EarthCARE observations based on combined cloud-resolving and aerosol model data are used to test the processors generating the target classifications. Finally, the target classifications are evaluated by quantifying the fractions of ice and snow, liquid clouds, rain, and aerosols in the atmosphere that can be successfully identified by each instrument and their synergy. We show that radar–lidar synergy helps better detect ice and snow, with ATLID detecting radiatively important optically thin cirrus and cloud tops, while CPR penetrates most deep and highly concentrated ice clouds. The detection of rain and drizzle is entirely due to C-TC, while that of liquid clouds and aerosols is due to A-TC. The evaluation also shows that simple assumptions can be made to compensate for when the instruments are obscured by extinction (ATLID) or surface clutter and multiple scattering (CPR); this allows for the recovery of the majority of liquid cloud not detected by the active instruments.
Irbah, A., Delanoë, J., van Zadelhoff, G.-J., Donovan, D. P., Kollias, P., Puigdomènech Treserras, B., Mason, S., Hogan, R. J., and Tatarevic, A. The classification of atmospheric hydrometeors and aerosols from the EarthCARE radar and lidar: the A-TC, C-TC and AC-TC products
Journal: Atmospheric Measurement Techniques, Volume: 16, Year: 2023, First page: 2795, Last page: 2820, doi: 10.5194/amt-16-2795-2023