A non-stationary index-flood model was used to analyse the 1-day summer and 5-day winter precipitation maxima in the Rhine basin in an ensemble of 15 transient regional climate model (RCM) simulations. It is assumed that the seasonal precipitation maxima follow a generalized extreme value (GEV) distribution with time varying parameters. The index-flood assumption implies that the dispersion coefficient (the ratio of the scale and the location parameters) and the shape parameter are constant over predefined regions, while the location parameter varies within these regions. A comparison with the estimates from gridded observations shows that these GEV parameters are too large in the summer season, while there is a large overestimation of the location parameter and underestimation of the dispersion coefficient in winter. However, a large part of the biases in the summer season might be due to the low number of stations used for gridding the observations. Though there is considerable variation in the changes of the extreme value distributions among the RCM simulations, common tendencies can be identified. In summer, large quantiles increase as a consequence of an increase of the dispersion coefficient, while there is almost no change of low quantiles. In winter, low quantiles increase because of an increase of the location parameter. This effect is, however, counterbalanced by a decrease of the shape parameter in most RCM simulations, resulting in only a slight increase of large quantiles. Departures from the assumed index-flood model were observed in the Alpine region in the south of the basin. This is due to the strong spatial heterogeneity in the dispersion coefficient in a number of RCM simulations and a significant altitude dependence of the trend in the location parameter in winter in five RCM simulations.
M Hanel, TA Buishand. Analysis of precipitation extremes in an ensemble of transient regional climate model simulations for the Rhine basin
Status: published, Journal: Clim. Dyn., Volume: 36, Year: 2011, First page: 1135, Last page: 1153, doi: 10.1007/s00382-010-0822-2