The TROPOspheric Monitoring Instrument (TROPOMI) is used to derive top-down NOX emissions for two large power plants and three megacities in North America. We first re-process the vertical column NO2 with an improved air mass factor to correct for a known systematic low bias in the operational retrieval near urban centers. For the two power plants, top-down NOX emissions agree to within 10% of the emissions reported by the power plants. We then derive top-down NOX emissions rates for New York City, Chicago, and Toronto, and compare them to projected bottom-up emissions inventories. In this analysis of 2018 NOX emissions, we find a +22% overestimate for New York City, a −21% underestimate in Toronto, and good agreement in Chicago in the projected bottom-up inventories when compared to the top-down emissions. Top-down NOX emissions also capture intraseasonal variability, such as the weekday versus weekend effect (emissions are +45% larger on weekdays versus weekends in Chicago). Finally, we demonstrate the enhanced capabilities of TROPOMI, which allow us to derive a NOX emissions rate for Chicago using a single overpass on July 7, 2018. The large signal-to-noise ratio of TROPOMI is well-suited for estimating NOX emissions from relatively small sources and for sub-seasonal timeframes.
DL Goldberg, Z Lu, DG Streets, B de Foy, D Griffin, CA McLinden, LN Lamsal, NA Krotkov, H Eskes. Enhanced Capabilities of TROPOMI NO2: Estimating NOX from North American Cities and Power Plants
Status: published, Journal: Environmental Science & Technology, Volume: 21, Year: 2019, First page: 12594, Last page: 12601, doi: https://doi.org/10.1021/acs.est.9b04488