Evidence that extreme rainfall intensity is increasing at the global scale has strengthened
considerably in recent years. Research now indicates that the greatest increases are likely to occur in short-duration storms lasting less than a day, potentially leading to an increase in the magnitude and frequency of flashfloods. This review examines the evidence for subdaily extreme rainfall intensification due to anthropogenic climate change and describes our current physical understanding of the association between subdaily extreme rainfall intensity and atmospheric temperature. We also examine the nature,
quality, and quantity of information needed to allow society to adapt successfully to predicted future
changes, and discuss the roles of observational and modeling studies in helping us to better understand the
physical processes that can influence subdaily extreme rainfall characteristics. We conclude by describing
the types of research required to produce a more thorough understanding of the relationships between
local-scale thermodynamic effects, large-scale atmospheric circulation, and subdaily extreme rainfall intensity
S Westra, HJ Fowler, JP Evans, LV Alexander, P Berg, F Johnson, EJ Kendon, G Lenderink, NM Roberts. Future changes to the intensity and frequency of short-duration extreme rainfall.
Status: published, Journal: Reviews of Geophysics, Volume: 52, Year: 2014, First page: 522, Last page: 555, doi: 10.1002/2014RG000464