We investigated sharp disruptions of local turbulence and scalar transport due to the arrival of sea-breeze fronts (SBF). To this end, we employed a comprehensive 10-yr observational database from the Cabauw Experimental Site for Atmospheric Research (CESAR, The Netherlands). Sea-breeze (SB) days were selected using a five-
filter algorithm, that accounts for large-scale conditions and a clear mesoscale-frontal signal associated with the land-sea contrast. Among those days (102 in all, 8.3%), based on the value of the sensible-heat flux at the onset of SB, we identified three atmospheric boundary layer (ABL) regimes: convective, transition and stable. In the convective
regime the thermally-driven convective boundary layer is only slightly altered by a small enhancement of the shear when the SBF arrives. Regarding the transition regime,we found that the ABL afternoon transition is accelerated. This was quantified by estimating the contributions of shear and buoyancy to the turbulent kinetic energy. Other relevant disruptions are the sharp reduction in ABL depth (∼250 m h-1) and the sudden increase in average wind speed (> 2 m s-1). In the stable regime the arrival of the SB leads to disturbances in the wind profile at the surface layer. We observed
a deviation of more than 1 m s-1 in the observed surface-layer wind profile compared to the profile calculated using the Monin-Obukhov Similarity Theory (MOST). Our findings furthermore reveal the determinant role of the SB direction in the transport of water vapour, CO2 and 222 Rn. The return of continental air masses driven by the
SB circulation generates sharp CO2 increases (up to 14 ppm in half an hour) in a few SB events. We suggest that the variability in 222Rn evolution may also be influenced by other non-local processes such as the large-scale footprint from more remote sources.
Arrillaga, Vila-Guerau de Arellano, Bosveld, Klein Baltink, Yague, Sastre, Roman-Cascon. Impacts of afternoon and evening sea-breeze fronts on local
Status: published, Journal: Quart. J. Royal Meteor. Soc., Year: 2018, doi: 10.1002/qj.3252